

The Future of Multimedia and Video Retrieval

Myths and Opportunities

Alex Hauptmann Dept. of Computer Science & Language Technologies Institute Carnegie Mellon University, Pittsburgh, PA, USA <u>alex@cs.cmu.edu</u> <u>http://www.cs.cmu.edu/~alex</u>

Video Analysis and Retrieval is Dead!

1. In the future, most metadata will be attached at creation time

All Metadata is Attached at Creation

- Cameras can record location, lighting, camera motion
- Editing actions will be remembered and connected to the video product
- Movies and sports events
 - High production value
 - High profit
 - High costs to create

Incremental cost to do good manual annotation is marginal

- What about low value video production
 - YouTube, Flickr, etc. ?

Video Analysis and Retrieval is Dead!


- 1. In the future, most metadata will be attached at creation time
- 2. Social video sharing sites can do any search much better than automated methods

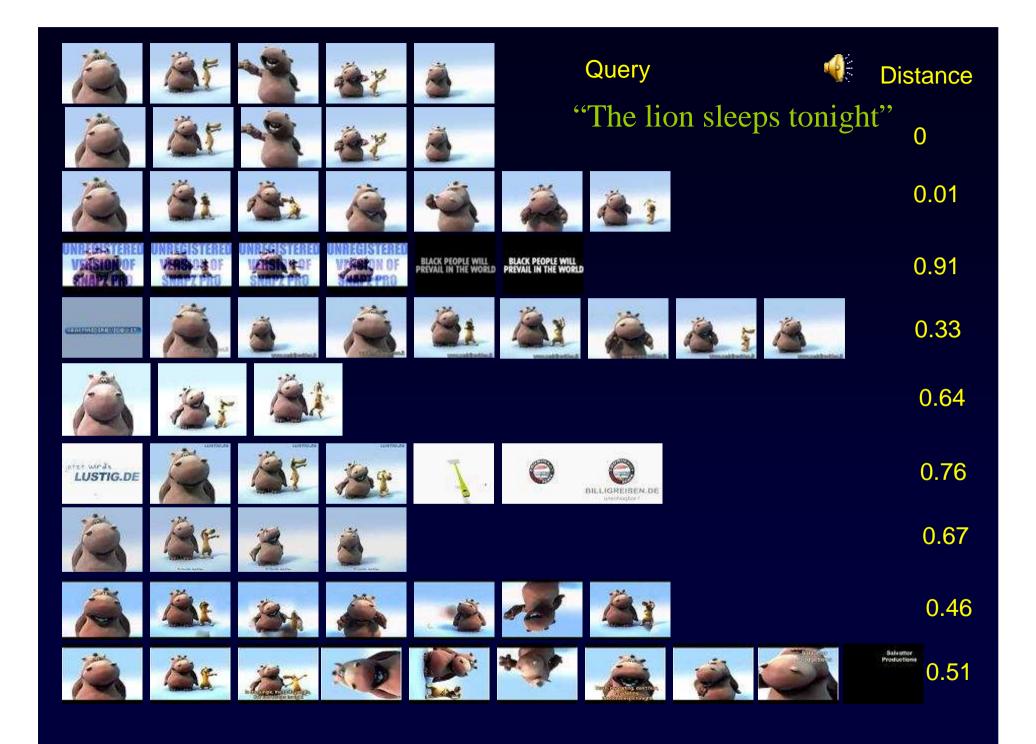
Social Multimedia Sharing

Flickr, MySpace, YouTube, ...

- User comments, annotations, tags, links
- Reasonable retrieval capability
- Everything will be done with social and human computation

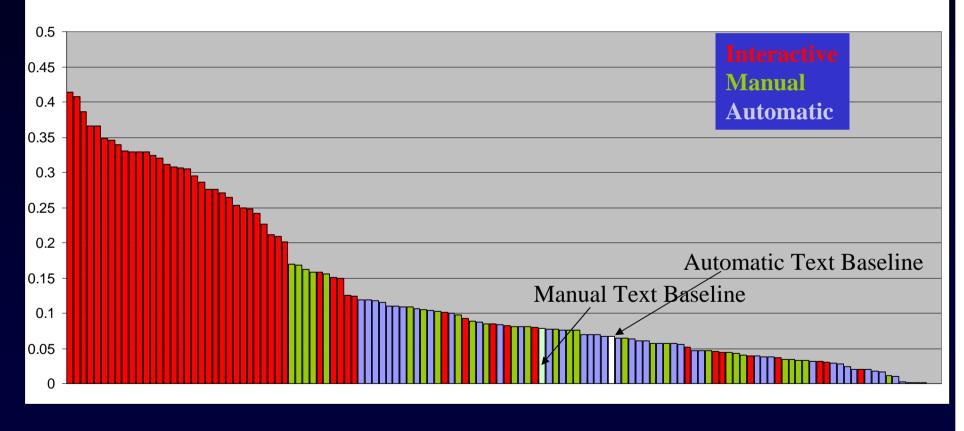
Let's consider this




pwned

ned - Windows Internet Expl	orer
http://youtube.com/watch?v=RdtAC	v8Ekef8
🔏 Citea hotel tilsit paris, appart	YouTube - pwned X
	Pssst! Go to the "Channels" tab if you want to see
	YouTube's hottest stars! Videos Categories Channels Community O Upload Videos

pwned



Video Analysis and Retrieval is Dead!

- 1. In the future, most metadata will be attached at creation time
- 2. Social video sharing sites can do any search much better than automated methods
- 3. Video retrieval doesn't work any better than text search
 - TrecVid 2001 2003

TRECVID 2005 System Comparisons

All TRECVID Submitted Runs

Differences between best systems and baselines are significant

Accuracy for non-interactive systems is consistently LOW

What Makes Video Retrieval Work?

- Low level visual features are not sufficient to understand an image or video clip ("Semantic Gap")
 - Low-level: Texture, color, shape, interest points, motion, audio (SFFT, MelCep, Zero crossing, ...)
- Describe video through intermediate semantic concepts
 - Face, car, outdoors, boat, building, clouds, sky, water, ...
- Semantic concepts can be learned automatically
- Semantic concepts are useful for retrieval

Why are Semantic Concepts Important?

- What if we could detect a lot of concepts?
- Speech recognition analogy
 - 100 words \rightarrow 1000 words \rightarrow 20,000 words \rightarrow 64,000 words

LSCOM – A Large Scale Ontology for Multimedia

- 2 year workshop to define and annotate 1000 concepts
- Defined 850 concepts
- Extended via ontology to ~2400 concepts,
- Annotated 450 concepts on 70 hours of TV news
- Available at <u>www.LSCOM.org</u>

39 Semantic Concepts (LSCOM-Lite)

1	Sports	20	Person
2	Entertainment	21	Government-Leader
3	Weather	22	Corporate-Leader
4	Court	23	Police-Security
5	Office	24	Military
6	Meeting	25	Prisoner
7	Studio	26	Animal
8	Outdoor	27	Computer-TV
9	Building	28	Flag-US
10	Desert	29	Airplane
11	Vegetation	30	Car
12	Mountain	31	Bus
13	Road	32	Truck
14	Sky	33	Boat-Ship
15	Snow	34	Walking-Running
16	Urban	35	People-Marching
17	Waterfront	36	Explosion-Fire
18	Crowd	37	Natural-Disaster
19	Face	38	Maps 39 Charts

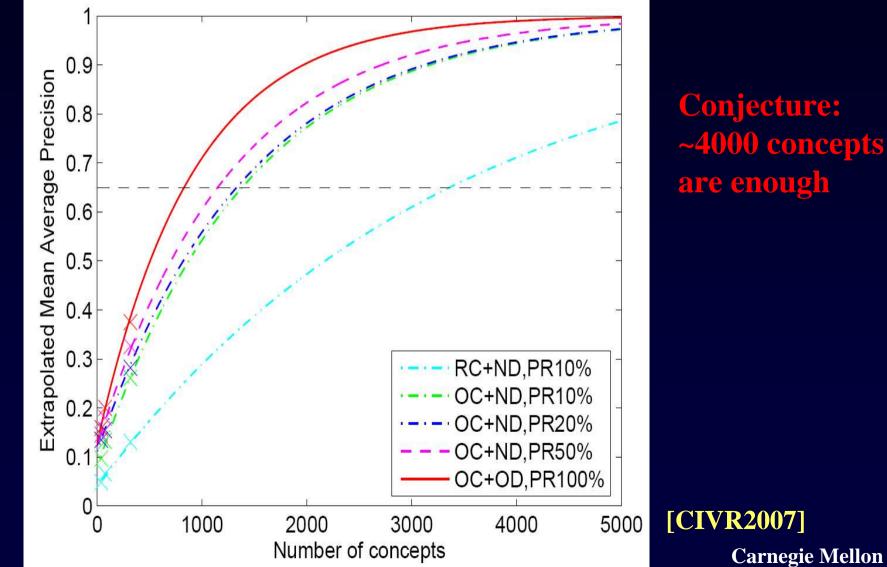
Annotated Concept Sets

- Trecvid 2006 development data
 - ~70hours English, Arabic, Chinese News
 - 62000 shots
- 3 Annotated Concept Sets:
- LSCOM Lite
 - 39 concepts
- Media Mill
 - 75 concepts that overlap with LSCOM
- LSCOM
 - 300 concepts
 - Minimal frequency cutoff

Speculative Scenario with Lots of Concepts

[Hauptmann et al, CIVR2007]

Best Case:


- Perfect concept <u>detection</u> (Oracle)
- Perfect concept <u>combination</u> (Oracle)
- Noisy detection (different error rates)
- Realistic combination (50%)

Extrapolation Assumption:

- Things get harder as you add more concepts
 - Proportional to the difference between the current MAP and the upper limit of 1
 I.e. the higher the current MAP, the less benefit a new concept offers

How well can you retrieve relevant shots (documents)

Extrapolation Results

Conjecture: ~4000 concepts are enough

Opportunities in Multimedia Retrieval Beyond the Standard Paradigm

Retrieval with robust semantic concepts

• Ontology?

Retrieval of web video

- Duplicate removal
- Summarization and preview
- Combine social network analysis and content analysis

Retrieval from long-term surveillance

- No human annotation possible
- Collaboration with of multimedia, computer vision and information retrieval
- Nursing home Scenario

CareMedia:

Automated Behavior Analysis in the Nursing Home

Longitudinal video and sensor analysis into semantic concepts

• Automating detection of behavioral & psychological symptoms of dementia

Goal: Monitoring and maintaining the quality of life Automated, quantitative measurements to:

- Explore relationship of dementia to environments in which they occur
- Evaluate symptoms longitudinally
- Determine of the frequency of symptoms
- Develop a patient profile of responses to pharmacological and nonpharmacological interventions

>>>> Enable earlier intervention to sustain quality of life

CareMedia: What are the observables?

Who?

 Identify people across cameras, days

What are they doing?

- Wandering around
- Working on tasks
- Looking for things
- Eating, sleeping
- How well did they do it?
 - Quantify performance
 - Detect/report anomalies

Opportunities in Multimedia Retrieval Beyond the Standard Paradigm

Retrieval with robust semantic concepts

Ontology?

Retrieval of web video

- Duplicate removal
- Summarization and preview
- Combine social network analysis and content analysis

Retrieval from long-term surveillance

- No human annotation possible
- Collaboration with of multimedia, computer vision and information retrieval
- Nursing Home Example
- Integrate retrieval from sensors with video, audio and text data
 - Digital Human Memory example

Digital Human Memory

- Technology for creating a continuously recorded, digital, high fidelity record of one's whole life in video form
- Personal, mobile units which record audio, video, GPS and electronic communications (wifi, bluetooth), body sensor data; capturing all that is heard, seen & experienced
- Transforming this personal history into a meaningful, accessible information resource
- Feasible: ~200MB/h or 2GB/day or .66 TB/year or 60 TB/lifetime

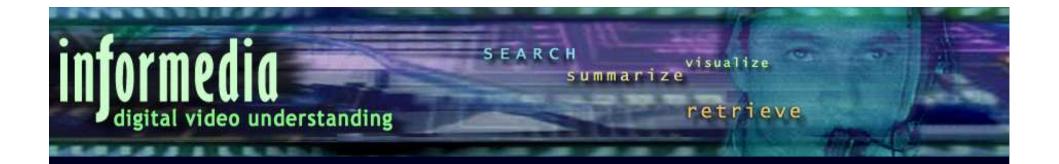
Opportunities in Multimedia Retrieval Beyond the Standard Paradigm

Retrieval with robust semantic concepts

Ontology?

Retrieval of web video

- Duplicate removal
- Summarization and preview
- Combine social network analysis and content analysis


Retrieval from long-term surveillance

- No human annotation possible
- Collaboration with of multimedia, computer vision and information retrieval
- Nursing Home Example
- Integrate retrieval from sensors with video, audio and text data
 - Digital Human Memory example

Less studied areas:

- Analysis of emotion in video
- Analysis of bias and perspectives in editing and presentation
- Insert advertising into video
- Tools for video creation and video mashups

New paradigms for information access for imperfect data

Thank You